S’il vous plait l’intégrale double de x+2y tel que 0<=x<=1 et 0<=y<=1
Mathématiques
HOUNAIDA98
Question
S’il vous plait l’intégrale double de x+2y tel que 0<=x<=1 et 0<=y<=1
1 Réponse
-
1. Réponse ProfdeMaths1
on applique le théorème de FUBINI :
[tex]I= \int\limits^1_0 { \int\limits^1_0 {(x+2y)} \, dx } \, dy= \int\limits^1_0 ( { \int\limits^1_0 {(x+2y)} \, dx }) \, dy = \int\limits^1_0 { (\frac{1}{2} +2y)} \, dy[/tex]
donc
[tex]I= \int\limits^1_0 { \int\limits^1_0 {(x+2y)} \, dx } \, dy=[ \frac{y}{2}+y^2]^1_0= \frac{3}{2} [/tex]