Voici un exercice de mathématique: Deux droites (d1) et (d2) sont sécantes en o ; M est un point de (d1) tel que : OM= 11,9 cm et N est un point de (d2) tel que
Mathématiques
lejeuxdujeux
Question
Voici un exercice de mathématique:
Deux droites (d1) et (d2) sont sécantes en o ;
M est un point de (d1) tel que : OM= 11,9 cm et
N est un point de (d2) tel que: ON= 12cm
On sait d'autre part que : MN= 16,9 cm
Démontre que les droites (d1) et (d2) sont perpendiculaires
1 Réponse
-
1. Réponse ficanas06
Dans le triangle OMN, MN est la plus grande longueur.
Je calcule MN²=16.9²=285.61 d'une part
et OM²+ON²=11.9² + 12²=285.61 d'autre part.
Je constate que MN²=OM²+ON²
D'après la réciproque du t de Pythagore, le triangle OMN est rectangle en O et donc, les droites (d1) et (d2) sont perpendiculaires.